دید کلی
بطور کلی ستارگان دارای مراحل مختلف جنینی ، کودکی و جوانی و پیری هستند. پس از اکتشاف برابری جرم و انرژی توسط انیشتین ، دانشمندان تشخیص دادند که کلیه ستارگان باید تغییر و تحول یابند. تکامل ، تخریب و محصول نهایی یک ستاره ، به جرم آن بستگی دارد. در واقع سرنوشت نهایی ستاره که تا چه مرحله ای از پیشرفت خواهد رسید با جرم ستاره ارتباط مستقیم دارد. اطلاعات مربوط به جرم ستارگان از مسائل بسیار مهم به شمار میرود.
تشکیل ستارهها
گوی آتشین مورد نظر در نظریه انفجار بزرگ، حاوی هیدروژن و هلیوم بود، که در اثر انفجار بصورت گازها و گرد و غباری در فضا بصورت پلاسمای فضایی متشکل از ذرات بسیاری از جمله الکترونها ، پروتونها ، نوترونها و نیز مقداری یونهای هلیوم به بیرون تراوش میکند. با گذشت زمان و تراکم ماده در برخی سحابیها شکل می گیرند. این مواد متراکم رشد کرده و تودههای عظیم گازی را بوجود میآورند که تحت عنوان پیش ستارهها معروفند و با گذشت زمان به ستاره مبدل میشوند. بسیاری از این تودهها در اثر نیروی گرانش و گریز از مرکز بزرگ و کوچک میشوند، که اگر نیروی گرانش غالب باشد، رمبش و فرو ریزش ستاره مطرح میشود و اگر نیروی گریز از مرکز غالب شود، احتمال تلاشی ستاره و شکل گیری اقمار و سیارات میرود.
ارتباط جرم با مرگ ستارگان
سه طریق برای مرگ ستارگان وجود دارد. ستارگانی که جرم آنها کمتر از 1.4 برابر جرم خورشید است. این ستارگان در نهایت به کوتولههای سفید تبدیل میشوند. ستارگانی که جرم آنها بیشتر از 1.4 برابر جرم خورشید است، در نهایت به ستارگان نوترونی و به سیاه چالهها تبدیل خواهند شد.
مراحل پایانی عمر ستارگان
دیر یا زود سوخت هستهای ستارگان به پایان رسیده و در این صورت ستاره با تراکم خود ، انرژی گرانشی به انرژی هستهای غالب آمده و این تراکم (رمبش) تا تبدیل شدن الکترونهای آزاد ستاره به الکترونهای دژنره ادامه پیدا میکند، که در این صورت ستاره به یک ستاره کوتوله سفید تبدیل شده است. برخی از ستارگان از طریق انفجارهای ابر نواختری به ستارگان نوترونی تبدیل میشوند. هنگامی که ستاره در اواخر عمر خود باشد، به مراحل نواختر یا ابر نواختر میرسد.
در این مرحله ستاره از حداکثر انرژی خود استفاده میکند و این امر سبب میشود که شدت تابش نور آن بطور چشمگیر تغییر کند. در این حالت ستاره گرد و غبارهای (سحابیها) اطراف خود را میبلعد و این امر سبب میشود که بر ذرات تشکیل دهنده ستاره فشار وارد آید. ستاره حالتی پلاسمایی دارد و فشار ممکن است به حدی برسد که بر الکترونها و هستههای آن اثر کند و الکترون به پروتون برخورد کرده که در این برخورد به نوترون تبدیل میشود.
در طی این واکنش مقادیر زیادی امواج گاما تولید میشود. اگر تعداد نوترونهای تشکیل به قدری زیاد شوند که در این ستاره ، حجم نوترونها به 16 کیلومتر برسد در این هنگام ، چگالی این ستاره بسیار زیاد میشود، بطوری که میتواند نور را از مسیر خود منحرف و خمیده کند. در این مرحله ستاره به ستاره نوترونی تبدیل میشود.
اگر شعاع تعداد نوترونهای آن به بیش از 16000 کیلومتر برسد (البته در این افزایش شعاع ، نوترونها به هم فشرده هستند)، چگالی این ستاره به قدری زیاد میشود که میتواند نور را هم به خود جذب کند، که به آن سیاهچاله میگویند. سیاهچالهها با جرم زیاد خود ، حجم کوچکی دارند. تشکیل سیاه چاله آخرین مرحله مرگ ستاره میباشد.
انواع سیاهچاله
|
1. شوارتس شیلید: ساده ترین نوع سیاهچالههاست، بار و چرخش ندارد، تنها یک افق رویداد و یک فوتون کره دارد، از آن نمی توان انرژی استخراج کرد. شامل تکینگی ، نقطهای است که در آن ماده تا چگالی نامحدود در هم فرو رفته است.
2. رایزنر- نورد شتروم: هم بار دارد وهم چرخش ، می تواند دو افق رویداد داشته باشد ، اما تنها یک فوتون کره دارد. شامل یک تکینگی نقطه ای است که وجود آن در طبیعت نامحتمل است، زیرا بارهای آن همدیگر را خنثی می کنند.
3. کر: چرخش دارد، اما بار ندارد. بیضی و از بیرونی حد استاتیک است. منطقه تیره میان افق رویداد و حد استاتیک ارگوسفر است، که می توان از آن انرژی استخراج کرد. می تواند دو افق رویداد و دو حد استاتیک داشته باشد. دو فوتون کره دارد. شامل یک تکینگی حلقهای است.
4. کر- نیومان: هم بار دارد و هم چرخش ، همان سیاهچاله کر است، جز اینکه بار دارد، ساختارش شبیه ساختار سیاهچاله کر است. میتوان از آن انرژی استخراج کرد. یک تکنیگی حلقهای دارد.
بنظر پژوهشگران چهارنوع سیاهچاله همچنانکه ذکر شد می تواند وجود داشته باشند. مهمترین موضوع در باب سیاه چاله آنست که ، بدانیم ماده در داخل سیاهچالهای که حاصل آمده است در نهایت به چه سرنوشتی دچار می شود؟ اختر فیزیکدانان میگویند:
اگر مقداری ماده به داخل حفره سیاه از قبیل آنچه که از یک ستاره وزین مرده بجای مانده بیندازید، نتیجه نهایی همواره الزاما یک چیز خواهد بود و تنها جرم ، بار الکتریکی و اندازه حرکت زاویه ای که جسم با خود حمل می کند باقی خواهند ماند. اما اگر کل جهان به داخل حفره سیاه خود بیفتد، یعنی به شکل سیاهچاله در آید، دیگر حتی کمیاب بنیادی (جرم) ، بار الکتریکی و اندازه حرکت زاویه ای نیز ناپدید می گردند.
طبق نظریه ، نسبیت عام ، گرانش انحنا دهنده فضا – زمان است. فضای حول ستاره به نحو بارزی خم میشود در لحظهای که هسته ستاره تبدیل به حفره سیاه میشود. این جرم خطوط فضا زمان را مانند پیلهای به دور خود میپیچد. امواج نوری کم تحت زوایای خاصی به سمت سیاهچاله روان میشود. در سطح کرهای که هم مرکز نقطه یکتایی سیاهچاله است، تجمع میکنند. در فاصله معینی از سیاهچاله که بسته به جرم ستاره رمبیده دارد، جاذبه آنچنان زیاد است که نور نمیتواند فرار کند، به این فاصله افق حادثه گفته میشود.
ساختار سیاهچالهها
با حل استاتیک غیر چرخشی با تقارن کروی برای معادلات میدان انیشتین این نکته مشخص میشود که سیاهچالهها که از یک سمت به صورت چاه عمل میکنند، در سطح دیگری بصورت چشمه عمل میکند. یعنی میتواند دو سطح مختلف فضا زمان را از جهانهای گوناگون یا دو نقطه بسیار دور از جهان خودمان را به هم متصل کند. که به این حالت کرم چاله یا پل انیشتین رزن گفته میشود.
سیاهچالهها چگونه بوجود میآیند؟
هر چه ستارههای نوترونی بزرگتر باشد کشش جاذبهای داخلی آن نیز بیشتر خواهد بود. در سال 1939 اوپنهایمر فکر کرد که نوترونها نمیتوانند در برابر همه چیز مقاومت کنند. به نظر او اگر یک چیز در حال از هم پاشیدن بزرگتر از 2.3 برابر اندازه خورشید بود، آنگاه نه تنها الکترونها بلکه نوترونهای آن نیز در هم میشکست.
همچنین باید بدانیم که وقتی نوترونها در هم شکستند، دیگر هیچ چیز مطلقا وجود ندارد که از در هم پاشیدن ستاره جلوگیری کند. اگر شما خود را روی سطح یک توده در حال از هم پاشیدن تصور کنید، آنگاه شما با فرو ریختن آن جسم به مرکز آن نزدیکتر و نزدیکتر خواهید شد. و بنابراین نیروی جاذبه بیشتر و بیشتری را حس خواهید کرد. تا هنگامی که ستاره به مرحله کوتوله سفید برسد، شما بیش از 1.016 تن وزن پیدا خواهید کرد.
وقتی که ستاره به در هم پاشیدن ادامه داد و از مرحله ستاره نوترونی هم گذشت و بطور کامل از هم پاشید، وزن شما از 15000 میلیون تن بیشتر و بیشتر خواهد شد. اگر سیاهچاله به اندازه کافی به ما نزدیک بود، میتوانستیم نیروی جاذبه بر آن را حس کنیم. اما وقتی یک سیاه چاله در میان ستارهها خیلی دورتر از ما قرار دارد، آیا میتوانیم وجود آنرا اثبات کنیم؟ برای این منظور اخترشناسان دو راه آشکار شدن حدس میزنند.
• اول از روی جرم سحابی برای مثال اگر آنها جرمهای تمام ستارگان موجود در یک خوشه ستارهای مرئی بطور قابل ملاحظهای کمتر از جرم خوشه وجود داشته باشد، مرکز کهکشانها به عنوان مکانهایی تلقی میشوند که در آنها سیاهچالهها وجود دارند. زیرا چگالی مواد در آنجا زیاد است.
• راه دوم نیز این بوده که اگر چه hc سیاهچالهها هیچ تشعشعی خارج نمیشود، اما چیزهایی که در سیاهچالهها سقوط میکنند. به هنگام سقوط اشعه ایکس از خود منتشر میکنند و هر چیز کوچکی که در سیاهچالهها سقوط کند تنها مقدار کمی اشعه ایکس از خود منتشر میکند. این مقدار برای کشف آن در فاصله میلیونها میلیون کیلومتری کافی نخواهد بود.
در سال 1971 یک دانشمند انگلیسی به نام استفن هاوکینگ عنوان کرد که این واقعه بوجود آمدن سیاهچالهها هنگامی که جهان نخستین انفجار بزرگ خود را آغاز کرد اتفاق افتاده است. هنگامی که تمامی مواد تشکیل دهنده جهان منفجر شد، مقداری از این مواد آن چنان به هم فشرده شدند که تبدیل به سیاهچاله گشتند. وزن برخی از این سیاهچالهها ممکن است به اندازه وزن یک سیاره کوچک و یا از آن کمتر باشد و وی آنها را سیاهچاله کوچک نامید.
نتایج تحقیقات هاوکینگ
• سیاهچالهها میتوانند وزن از دست بدهند.
• مقداری از انرژی جاذبهای آنها در خارج از محدوده شعاع شوارتز شیلد ستاره به ذرات ماده تبدیل میشود.
• ممکن است این ذرات به فضای بیرون بگریزند از این طریق مقداری از مواد تشکیل دهنده سیاهچالههای بزرگ که به اندازه یک ستاره وزن دارند، برای تبخیر همه مواد تشکیل دهندهاش میلیونها میلیون سال وقت لازم است. در حالی که در این مدت خیلی بیشتر از این مقدار ماده به آن اضافه میشود. بنابراین هیچگاه از طریق تبخیر وزن آن کاسته نمیشود.
• هر چه سیاهچاله کوچکتر باشد سرعت تبخیر آن بیشتر است یک سیاهچاله کوچک واقعی باید بیشتر از مقدار مادهای که به خود جذب میکند وزن از دست بدهد. بنابراین سیاهچاله کوچک باید بوسیله تبخیر کوچکتر و کوچکتر شود و بالاخره هنگامی که دیگر خیلی خیلی کوچک شد یک مرتبه تبخیر آن حالت انفجاری به خود گرفته و تشعشعاتی حتی با انرژی بیشتر از اشعه ایکس منتشر کند. اشعه منتشر شده از این طریق اشعه گاما خواهد بود.
• سیاهچالههای کوچکی که 15 میلیون سال پیش هنگام نخستین انفجار بزرگ جهان ایجاد شدهاند، اکنون ممکن است در حال ناپدید شدن باشند. هاوکینگ اندازه اولیه آنها و نوع اشعه گامایی را که هنگام انفجار تولید میکنند، حساب کرد.
جالب بود واقعا…ممنون.
thank you
جالب بود متشکر
good
عالی بود . ممنون
بدک نبود
مطلب جالبی بود.
khoshm oomad-mer30